Questions

- Have you ever had the experience of buying a brand new phone, and just a week after the warranty expires, it suddenly stop working?
- Everyone will die but who can survive longer?
"Death is certain, the time is not"

Outline

-What is the survival analysis and when can we use the survival analysis?

- Survival data structure
- Basic concepts
- Visualizing and comparing the survival curves
- Modeling the effect of covariates on survival
-When can a model not be used?

Survival analysis

- Is not restricted to death and survival
- 'time-to-event analysis' or 'event history analysis'
- Examples
- Time from surgery to death
- Time from HIV infection to development of AIDS
- Time to machine malfunction

Treatment
 (A vs B)

- Can patients survive longer if they recieve a new treatment A ?

Follow 1 year

Complication: people might drop out of studies!

Censoring

Censoring may arise in the following ways

- has not (yet) experienced the event of interest within the study time period
- lost to follow-up
- a patient experiences a different event that makes further follow-up impossible.

Survival data structure

Survival time

- Starting time of the true survival time (Time=o)
- Study entry
- Beginning of treatment
- Disease diagnosis
- Surgery
- Point in calendar time
- Birth...

Survival time

- Time until an event occurs (time scale)
- Time on study
- Age at follow-up

- Survivor function $S(t)=\operatorname{Pr}(T>t)$
- The probability that an individual survives longer than t.
- Hazard function $h(t)=\lim _{\Delta t \rightarrow 0}\left(\frac{t \leq T<t+\Delta t \mid T \geq t}{\Delta t}\right)=\frac{f(t)}{S(t)}$
- Instantaneous risk of the event
- The probability that an individual who is under observation (still alive) at a time t has an event at that time t

Relations between hazard rate and survival curves

T ~Exponential distribution

Relations between hazard rate and survival curves

T ~Weibull distribution

Goals of survival analysis

- Estimate and interpret survival and/or hazard functions
- Compare survival and/or hazard functions
- Modeling the effect of covariates on survival

1. Estimate survival function

Kaplan-Meier estimate of survival function

2. Compare survival function

Are KM curves statistically equivalent?

- Log-rank test
- Alternatives
- Wilcoxon (Breslow)
- Peto
- Flemington-Harrignton

Call:
survdiff(formula = Surv(time = obst, event = event) \sim tx, data = dkm1)
N Observed
Expected
tx=A 100

Cox proportional hazards regression

hazard rate at time t in the treatment $\mathrm{A}(\mathrm{X}=1)$ group: $h_{0}(t) \times \exp (\beta)$ hazard rate at time t in the treatment $\mathrm{B}(\mathrm{X}=0)$ group: $h_{0}(t)$

Hazard ratio: $\frac{h_{0}(t) \times \exp (\beta)}{h_{0}(t)}=\exp (\beta)$

How to interpret the results?

Hazard ratio: 0.42 (95\%CI= 0.26-0.67)
The hazard rate in the treatment A group is 0.42 times the hazard rate in the control group.

A patient in the treatment group A has 0.42 times probability (hazard) of death than a patient in the treatment group B.

The hazard of death occurring in the treatment A group is 58% lower compared to the baseline group (treatment B).

Cox proportional hazards regression

When can I use Cox PH regression?

Hazard function $\mathrm{h}(\mathrm{t})$

$$
h(t)=h_{0}(t) \times \exp (\beta X)
$$

Proportional hazards assumption

- The hazard for one individual is proportional to the hazard for any other individual, where the proportionality constant is independent of time
- Hazard ratio is constant over time

Violate PH assumption

Hazard ratio is not constant over time

Evaluating PH assumption (3 methods)

- Graphical approach: $\log (-\log S(t))$

Strata \mp Treatment $A+$ Treatment B

- Schonefeld residuals test

Global Schoenfeld Test p: 0.15

Parallel curves indicate the PH assumption is satisfied

Evaluating PH assumption (3 methods)

- Using time-dependent covariates

$$
h(t)=h_{0}(t) \times \exp \left(\beta_{1} X+\beta_{2} X \times g(t)\right)
$$

$$
\begin{aligned}
& g(t)=t \\
& g(t)=\log (t) \\
& g(t)=\left\{\begin{array}{l}
1 \text { if } t \geq t_{0} \\
0 \text { if } t<t_{0}
\end{array}\right. \text { (Heaviside function) }
\end{aligned}
$$

How can we do if PH assumption is violated?

- Landmark analysis
- Start the analysis at time=X and analyse only those subjects who have survival until the X
- Note: landmark time should be chosen carefully
- Fit several Cox models separately
- Divide into shorter time periods for which the proportional hazard assumption is nearly correct

How can we do if PH assumption is violated?

- Fit a modified Cox model that includes a time-dependent variable which measures the interaction of exposure with time

$$
h(t)=h_{0}(t) \times \exp \left(\beta_{1} X+\beta_{2} X \times g(t)\right) \quad g(t)=\left\{\begin{array}{l}
1 \text { if } t \geq 4 \\
0 \text { if } t<4
\end{array}\right. \text { (Heaviside function) }
$$

```
Ca11:
coxph(formula = Surv(time = obst, event = event) ~ tx1 + tt(tx1)
    data = dkm1, tt = function(x, t, ...) x * (t >= 4))
tt(tx1) -0.9341 0.3929 0.4926 -1.896 0.0579
Likelihood ratio test=17.81 on 2 df, p=0.0001359
n=200, number of events= 77
```

$\begin{array}{lrrrr} & \text { coef } & \text { exp(coef) } & \text { se(coef) } & \text { z } \\ \text { tx1 } & -0.4362 & 0.6465 & 0.3257 & -1.339 \\ 0.1805 & \text { HR before } 4 \text { months: exp(}-0.43 \text {) }=0.65\end{array}$
HR after 4 months: $\exp (-0.43-0.93)=0.25$

How can we do if PH assumption is violated?

- Stratified Cox model
- Stratification of a covariate that does not satisfy the PH assumption
- Ex. Sex doesn't satisfy PH

$$
h(t)=h_{0 i}(t) \times \exp \left(\beta_{1} X\right)
$$

$h_{01}(t)$ for males and $h_{02}(t)$ for females but they share the same β_{1} for treatment
Note: can't obtain a hazard ratio for the effect of sex adjusted for treatment

- Flexible parametric survival model
- 5/12 kl 12-13 Icke-proportionella hazarder i Coxmodeller, Christel Häggström

Suggested references

- Kleinbaum, \& Klein, M. (2012). Survival Analysis: A Self-Learning Text (3 ed.) Springer Nature. https://doi.org/10.1007/978-1-4419-6646-9
- Collett. (2015). Modelling survival data in medical research (3 ed.). Chapman \& Hall/CRC.

Canvas page:
 https://www.canvas.umu.se/courses/2600

Hösten 2023

- 19/9 kl 12-13 SPSS-handhavande
- 4/10 kl 12-13 Bortom linjäritet: En introduktion till splines
- 26/10 kl 12-13 Standardiserade epidemiologiska mått
- 14/11 kl 12-13 Enkätkonstruktion
- 5/12 kl 12-13 Icke-proportionella hazarder i Coxmodeller

